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Immunosuppressive natural products such as cyclosporin A,
FK506, rapamycin, deoxyspergualin, and didemnin B have proven
to be useful tools for dissection of cell signaling pathways.1

Moreover, these studies have recently culminated in the synthesis
of agents that exert cell and target specific responses.2 Pateamine
A (1) is a structurally novel and potent immunosuppressive natural
product isolated fromMycale sp.by Munro and Blunt off the
coasts of New Zealand.3 It uniquely combines a thiazole ring
and anE,Z-dienoate within a bis-lactone macrocycle bearing an
all-E trienylamine side chain. This novel array of functionality
makes pateamine A structurally dissimilar to other known
immunosuppressants. As a first step toward elucidating the
origins of its cellular effects, we now report a convergent,
stereochemically flexible route to pateamine A,4 wherein a
â-lactam ring was strategically implemented to introduce the C3
amino group and to serve as an activated acyl group for
macrocyclization.5 We have previously described the synthesis
of the C18-C24 fragment of pateamine A which aided in the
determination of the C24 absolute stereochemistry in collaborative
studies with Munro and co-workers.6 Importantly, this assignment
in conjunction with molecular modeling, extensive NMR studies,
and further chemical derivitization by the New Zealand group
provided a tentative stereochemical assignment of (-)-pateamine
A as 3R, 5S, 10S, 24S.7 With this information in hand, we
embarked on a total synthesis that has now verified the stereo-
chemical assignment and has enabled the synthesis of derivatives
for further biological studies.
Several issues guided our retrosynthetic plan (Figure 1). These

included the known lability of the C3 amino group,3 the
isomerization-proneE,Z-dienoate, the desire to incorporate and
liberate the polar amino groups at a late stage in the synthesis,
the flexibility of attaching various side chains to the macrocyclic
core structure, and finally the uncertainty of the stereochemical
assignment. With this last consideration in mind and due to the
distance between stereocenters, we resolved to introduce the four
stereocenters by reagent control. In addition, we realized that
some inherent flexibility was built into the synthetic plan since

the stereochemistry at C10 could be readily retained (acylation)
or inverted (Mitsunobu8) during the joining ofâ-lactam4 and
enyne acid5. The end-game strategy would rely upon aâ-lactam-
based macrocyclization to esterify the C24 alcohol and a Stille
coupling to append the trienylamine side chain. Concise and
efficient syntheses ofâ-lactam 4, enyne acid5,9 and the
dienylamino stannane6 were required at the outset.
The dienylamino stannane6was readily prepared in two steps

from enyne alcohol7 (Scheme 1).10 A one-pot tosylation and
displacement with dimethylamine provided the enyne amine8.11
Stannylcupration of this alkyne by the method of Oehlschlager
gave the desired stannane6 as a mixture of regioisomers which
could be enriched in the desired isomer (9:1).12

The synthesis ofâ-lactam4 commenced with a Nagao acetate
aldol reaction13 between aldehyde1014 and the (S)-valinol-derived
thiazolidinone9 (diastereomeric ratio (dr)> 19:1; Scheme 2).
Following alcohol protection, aminolysis gave the amide11which
was then converted to the corresponding thioamide with the
Belleau reagent.15 A modified Hantzsch thiazole synthesis16

delivered thiazole ester12. Half-reduction of this ester followed
by a Wadsworth-Emmons reaction simultaneously homologated
and introduced the (S)-phenylglycine-derived auxiliary required
for an asymmetric conjugate addition.17 Introduction of the C5
methyl group by the method of Hruby18 proceeded smoothly to
give a mixture of methyl adducts (dr 6.4:1) from which the major
diastereomer could be isolated in 77% yield. Transamidation
delivered the Weinreb amide15with the desired stereochemistries
at C5 and C10.19 What remained was installation of theâ-lactam,
and to accomplish this task, we were attracted to the method of
Miller involving an intramolecular Mitsunobu reaction of an aldol
product.20 In the event, half-reduction of Weinreb amide15 to
aldehyde16 followed by a Nagao acetate aldol reaction gave the
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Figure 1. Retrosynthetic analysis of pateamine A and structures of Boc-
and TCBoc-pateamine A.

Scheme 1
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desired aldol adduct in 90% yield. Conversion to theN-
(benzyloxy)amide and intramolecular Mitsunobu reaction gave
theâ-lactam17 in excellent overall yield. In preparation for the
â-lactam-based macrocyclization, reduction of the N-O bond was
cleanly effected with SmI221 in 96% yield and the resulting
â-lactam was protected as thetert-butyl carbamate.22 Deprotec-
tion of the triisopropylsilyl ether afforded the final key intermedi-
ate,â-lactam4.
With the required fragments in hand, their coupling to provide

pateamine A began by a Mitsunobu coupling between the alcohol
4 and the enyne acid5 providing the required C10 (S)-
stereochemistry.23 Deprotection of thetert-butyldimethylsilyl
ether gave alcohol18 and set the stage for the keyâ-lactam-
based macrocyclization. Building on conditions developed by
Palomo for the intermolecular alcoholysis ofâ-lactams employing
KCN in DMF, macrocyclization conditions were developed to
avoid the use of large volumes of DMF required for high
dilution.24 Use of 9.0 equiv of CH2Cl2-soluble Et4NCN cleanly
promoted theâ-lactam-based macrocyclization in 59-68% yield
at ambient temperature. With the Boc-protected macrocycle19
in hand, Lindlar reduction followed by Stille coupling (not shown)
provided Boc-pateamine A (2). Although we have been unable
to deprotect this compound without decomposition of the acid-
sensitive pateamine A molecule,25 this derivative allowed us to
obtain tentative confirmation of the relative stereochemistry26 and
to obtain some interesting and important, preliminary biological
results.27 Pateamine A was ultimately obtained employing the
trichloro-tert-butoxycarbamate (TCBoc) protecting group by
reasoning that the mild reductive conditions recently reported by
Ciufolini for the trichloroethoxy carbamate28would be compatible
with both the triene and dienoate.29 A three-step sequence

involving acid deprotection of the Boc-macrocycle19, reprotec-
tion with TCBoc-Cl, and Lindlar reduction provided the TCBoc-
macrocycle20. Stille coupling of this vinyl bromide and stannane
6 employing the conditions of Farina30 gave TCBoc-pateamine3
in 27% yield (57% based on recovered20), and deprotection using
Cd/Pb couple gave (-)-pateamine A (1) in 80% yield. The
synthetic material displayed physical and spectral properties
including 1H and 13C NMR, CD, IR, and UV identical to the
natural product.
In summary, a convergent synthesis has been developed for

(-)-pateamine A. During the course of the synthesis, we found
that N-O cleavage of aN-(benzyloxy)-â-lactam can be cleanly
effected with SmI2 and that Stille coupling of a vinyl bromide in
the presence of an allylic or triallylic acetate can be competitive
with π-allyl formation. In addition, a novelâ-lactam-based
macrocyclization was employed to construct the pateamine A
dilactone. This synthesis confirms the stereochemistry as 3R, 5S,
10S, 24S and sets the stage for delineation of its mechanism of
action by providing access to further quantities of pateamine A
and designed structural derivatives.
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Scheme 2a

a Key: (a)N-ethylpiperidine, CH2Cl2, -40 °C (dr>19:1, 84%); (b) CH2Cl2, 0 °C (99%); (c) CH2Cl2, 0 °C (86%); (d) THF, 25°C (82%); (e) DME,
-20f 0 °C (94%); (f) CH2Cl2, -90 °C (93%); (g) THF, 25°C (90%); (h) THF/DMS (3:2),-20 °C (dr 6.4:1, 77% isolated, major diastereomer); (i)
Me3Al, CH2Cl2, 0 °C (82%); (j) CH2Cl2, -90 °C (95%); (k)N-ethylpiperidine, CH2Cl2, -40 °C (dr,>19:1, 90%); (l) Me3Al, CH2Cl2, 0 °C (90%); (m)
THF, 25°C (92%); (n) THF, 0°C (96%); (o) CH2Cl2 (95%); (p) THF, 0°C (95%); (q) THF,-20 °C (86%); (r) py, THF, 25°C (86%); (s) CH2Cl2, 0
°C; (t) py, 25°C; (u) MeOH, 25°C (3 steps, 50%); (v) 1:4 Pd(15 mol %)/ligand, THF, 25°C (27%, 57% based on recovered20; (w) THF, 25°C (80%).
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